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Plant cells are surrounded by a rigid wall made up of cellulose

microfibrils, pectins, hemicelluloses, and lignin. This cell wall

provides structure and protection for plant cells. In grasses and

in dicot secondary cell walls, the major hemicellulose is a

polymer of b-(1,4)-linked xylose units called xylan. Unlike

cellulose — which is synthesized by large complexes at the

plasma membrane — xylan is synthesized by enzymes in the

Golgi apparatus. Xylan synthesis thus requires the coordinated

action and regulation of these synthetic enzymes as well as

others that synthesize and transport substrates into the Golgi.

Recent research has identified several genes involved in xylan

synthesis, some of which have already been used in

engineering efforts to create plants that are better suited for

biofuel production.
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Introduction
Lignocellulosic biomass is made up largely of the sec-

ondary cell walls of plants and is composed primarily of

cellulose, lignin, and the hemicellulose xylan. Xylan

consists of a backbone of xylose units with various

additional substitutions and xylan deposition in the sec-

ondary cell wall is required for normal plant growth and

development. Xylan also increases cell wall recalcitrance

and thereby helps to defend against herbivores and

pathogens. Pentoses cannot be fermented by microorgan-

isms such as yeast and therefore xylan represents a large

fraction of biomass that cannot be efficiently utilized for

fermentation, for example into biofuels. A complete un-

derstanding of the genes involved in xylan synthesis, how

they are regulated, and how changes to these genes affect

plant growth will allow us to design strategies for engin-

eering plants with altered xylan.
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Xylan structure
Xylan consists of a linear polymer of b-(1,4)-linked xylose

residues substituted with acetyl, glucuronic acid (GlcA),

4-O-methylglucuronic acid (Me-GlcA), and arabinose

residues (Figure 1). There is variation in xylan structures

between different species and even between different

tissues in the same species. In dicots, xylan is the pre-

dominant hemicellulose in secondary cell walls, but little

is found in primary cell walls. In Arabidopsis, the ratio

of Me-GlcA to GlcA substitutions is around two, and

(Me-) GlcA substitutions are found, on average, on one

out of every eight xylose residues [1��]. No arabinosyl

substitutions have been reported in Arabidopsis or poplar,

but they are known from other dicots. In contrast, xylans

in grasses (Poaceae) contain much more arabinofuranose

(Araf) and comparatively little GlcA. Araf may be a-(1,2)

or a-(1,3)-linked to the xylan backbone, and the a-(1,3)-

linked residues may be further substituted with xylose,

coumaric acid, or ferulic acid. Little information is avail-

able regarding the frequency and patterns of substitutions

in grasses, but in general the frequency of substitutions is

lower in older tissues.

Dicot xylan molecules include the tetrasaccharide 4-b-D-

Xyl-(1–4)-b-D-Xyl-(1–3)-a-L-Rha-(1–2)-a-D-GalA-(1–4)-

D-Xyl at their reducing ends. The function of this tetra-

saccharide is not known, although it has been suggested

to serve either as an initiator or terminator of xylan

backbone synthesis [2]. The structure of xylans is dis-

cussed in several recent reviews [3–6].

One elusive question regarding xylan structure is its

interactions with other cell wall polymers. Xylan has been

proposed to coat cellulose microfibrils and crosslink them

with each other or with other polymers via hydrogen

bonding, which may be influenced by xylan substitution

patterns since these patterns are expected to affect

xylan’s conformation and solubility [1��]. Xylan may also

covalently bind to other polymers: it may be linked to

lignin via ester bonds to GlcA and ether bonds to Xyl or

Ara [7,8], and the ferulic acid esters in grass xylans can

undergo oxidative dimerization to form crosslinks to

adjacent xylan chains or to lignin. A recent report provides

evidence that in Arabidopsis xylans can be covalently

linked to both pectin and arabinogalactan proteins in a

large proteoglycan complex called ‘Arabinoxylan Pectin

Arabinogalactan Protein 1’ (APAP1), possibly via the

rhamnose backbone residues in rhamnogalacturonan

and arabinose residues in arabinogalactan [9��]. The xylan

found to be linked to these structures contained arabi-

nose — which has not been observed before in Arabidop-

sis xylan — suggesting that the xylan in APAP1 is distinct
www.sciencedirect.com
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Figure 1
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Generalized structures of xylan. Dicot xylan is substituted with GlcA, Me-GlcA, and acetate. Arabinose substitutions may be present but are frequently

not found. The major domain has (Me-) GlcA on evenly spaced residues about eight xylose units apart, while the minor domain has (Me-) GlcA more

closely spaced. Rhamnose and galacturonic acid are found at the reducing end. In grasses, xylan may also be substituted with arabinose, xylose,

galactose, and ferulic and coumaric acid.
from previously studied Arabidopsis xylans. Very little is

known about synthesis of this xylan domain and how it is

attached to APAP1. Understanding this process, in-

cluding how much of xylan is linked to APAP1 and

whether linkage formation occurs in the Golgi, as poly-

saccharides are synthesized, or in the apoplast, will greatly

affect our understanding of xylan’s biosynthesis and role

in the wall.

Glycosyltransferases and other enzymes
involved in xylan synthesis
Several enzymes have been implicated in xylan synthesis,

many in the last few years. Figure 2 shows a schematic

overview of xylan biosynthesis. Two members of Glyco-

syltransferase Family 43 (GT43), Irregular Xylem (IRX) 9
and IRX14, and one member of GT47, IRX10, encode

putative xylosyltransferases required for synthesizing the

xylan backbone. Mutations in these three genes cause

dwarfing and a reduction in xylan content and xylosyl-

transferase activity [10,11]. In addition, related genes

IRX9-like (IRX9-L), IRX10-L, and IRX14-L appear to

encode functionally redundant paralogs [11,12]. Overex-

pressing IRX9 and IRX14 together in tobacco cell culture

results in higher microsomal xylan:xylosyltransferase

enzyme activity, leading to the suggestion that these

two proteins synthesize the xylan backbone cooperatively

[13]. However, overexpression of rice IRX9 in Arabidop-

sis led to increased xylan synthase activity without the

need for simultaneous overexpression of IRX14 [14].

Activity of purified IRX9 or IRX14 has not been shown

in vitro, and it is not clear whether these proteins and/or

IRX10 are catalytically active. A study of wheat xylan

synthase showed that homologs of IRX14 and IRX10

could be coimmunoprecipitated, indicating the presence
www.sciencedirect.com 
of several glycosyltransferases in the same xylan synthase

complex [15�]. The wheat xylan synthase complex also

contained UDP-arabinose mutase, which is responsible

for converting UDP-arabinopyranose to the UDP-arabi-

nofuranose that is the substrate for xylan arabinosyltrans-

ferases [15�,16]. The GlcA substitutions on xylans in the

Arabidopsis secondary cell wall are introduced by the

action of Glucuronic Acid Substitution of Xylan (GUX) 1

and GUX2, both members of the GT8 family [17,18��,19].

Interestingly, Bromley et al. [1��] showed that GUX1 is

responsible for adding GlcA to evenly spaced xylose

residues ranging from 6 to 26 residues apart, while

GUX2 adds GlcA to evenly as well as oddly spaced xylose

residues. These two different activities result in synthesis

of two distinct xylan domains, most likely separated from

each other but coexisting within the same xylan molecule.

The functional significance of these different domains is

unclear, although they may affect xylan’s ability to cross-

link cellulose microfibrils [1��].

4-O-Methyl groups are transferred from S-adenosyl-

methionine to GlcA residues by GXMT1, a protein con-

taining a Domain of Unknown Function 579 (DUF579)

[20��,21��]. Mutations in other DUF579 genes, specifi-

cally IRX15 and IRX15-L, have been shown to cause

decreases in xylan content in Arabidopsis [22�,23]; how-

ever, the biochemical function of IRX15 and IRX15L is

unclear, and they are unlikely to methylate glucuronox-

ylan since the degree of methylation is increased in irx15
and irx15-l mutants [20��]. IRX15 and IRX15-L may

instead be noncatalytically active members of a xylan

synthesis protein complex, or they may methylate

another cell wall polymer, such as pectin, that has

an indirect effect on xylan synthesis. Pectin contains
Current Opinion in Biotechnology 2014, 26:100–107
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Figure 2
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Xylan is synthesized in the Golgi apparatus by Type II membrane proteins anchored by a single N-terminal transmembrane domain and with their

catalytic domains in the Golgi lumen. Some proteins, such as IRX10, are predicted to lack a transmembrane domain. Substrates are synthesized in

both the cytosol and in the lumen. UDP-GlcA is transported into the Golgi by an unknown transporter and converted into UDP-Xyl by UDP-Xyl

Synthase (UXS). Another isoform of UXS is present in the cytosol, and UDP-Xyl synthesized there can also be transported into the Golgi. The relative

fluxes through these two separate pathways are unknown. UDP-Xyl is converted to UDP-Arap inside the Golgi by UDP-Xyl Epimerase (UXE) [57] and

UDP-Arap is converted to UDP-Araf by the mutase Reversibly Glycosylated Protein (RGP), located on the outer Golgi membrane [16]. Presumably

transporters must move UDP-Arap out of and UDP-Araf into the Golgi, but these transporters have not yet been identified. Some isoforms of

cytoplasmic UDP-Glc Epimerase (UGE) may also contribute to the conversion of UDP-Xyl to UDP-Arap [58]. BAHD acyltransferases in the cytosol are

involved in xylan synthesis and presumably transfer ferulic acid to an intermediate, such as UDP-Araf, which is then transported into the Golgi and

transferred onto xylan by unknown proteins. Acetate is likely added to xylan by the DUF231 protein Trichome Birefringence-like 29 (TBL29). Reduced

Wall Acetylation (RWA) proteins are also involved in acetylation and may serve as acetyl-CoA transporters. S-Adenosylmethionine, the substrate for

xylan methylation, is synthesized in the cytosol and must also be transported into the lumen. Not shown are transporters for coproducts such as CoA,

and S-adenosyl homocysteine, which must be removed from the Golgi and recycled in the cytosol. UMP is removed from the Golgi by the nucleotide

sugar transporters, which function as antiporters.
O-methylated fucose and xylose residues [24], and many

cell wall mutants show reductions in both pectin and

xylan, making it difficult to sort out pleiotropic effects

[11,25–27].

A recent paper has identified members of the GT61

family that are likely to add arabinosyl residues to the

xylan backbone [28��]. The biochemical function has

not been unequivocally demonstrated and it is unclear

how many different types of enzymes that are required

to add the different O-2 and O-3 linked arabinosyl

residues. Grass xylans often have xylose linked to
Current Opinion in Biotechnology 2014, 26:100–107 
O-2 of feruloylated arabinosyl residues and a recent

paper indicated that another GT61 enzyme is a xylo-

syltransferase responsible for this structure [29��]. Sev-

eral papers have confirmed that acyltransferases

belonging to the BAHD family are involved in the

addition of ferulic and coumaric acid esters to xylan

[30,31]. BAHD acyltransferases are cytoplasmic as are

the hydroxycinnamoyl-CoA substrates and therefore it

is surprising that these enzymes can mediate esterifica-

tion of nascent xylan in the Golgi lumen. Most likely an

intermediate acceptor is esterified in the cytoplasm and

transported into the Golgi. It has been speculated that
www.sciencedirect.com
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the intermediate could be feruloyl-UDP-arabinofura-

nose [32], but evidence for this is lacking.

A number of additional glycosyltransferases known as

IRX7/FRA8 (and the homolog IRX7L/F8H), IRX8/

GAUT12, and PARVUS/GATL1 have been implicated

in xylan biosynthesis due to the xylan deficient pheno-

type of the corresponding loss-of-function mutants [3,4].

These mutants have small amounts of xylan with a high

molecular mass and absence of the reducing end oligo-

saccharide, which has led to the suggestion that they are

involved in synthesizing the reducing end and that this

structure functions as a type of terminator [2]. However,

more recently the moss Physcomitrella patens, which does

not appear to have the reducing end oligosaccharide, was

shown to have likely orthologs of IRX8, IRX7, and

PARVUS [33]. The same is true for grasses, even though

functional equivalence of the putative orthologs has not

been demonstrated. Hence, these glycosyltransferases

that affect the reducing end structure in Arabidopsis

may not be directly involved in its biosynthesis.

The acetyl esters that are frequently found on O-2 and O-

3 of backbone xylose residues are ultimately derived from

acetyl-CoA. Proteins belonging to the Reduced Wall

Acetylation family are involved and may function at an

initial biochemical reaction or as transporters, since none

of these proteins are specific for xylan [34,35]. Proteins

belonging to the DUF231 family likely operate at a later

biochemical reaction and have a restricted specificity.

Recently, a DUF231 protein with a specific role in xylan

acetylation was identified [36�,37�].

Glycosyl hydrolases involved in xylan
synthesis
Since grass xylan in general contains fewer branches in

older tissue, one might expect that glycosyl hydrolases are

involved in modifying xylan substitutions as the plant

matures. Extracts from plants exhibit trans-b-xylanase,

xylosidase, and arabinosidase activities, indicating that

plants modify their xylan after synthesis [38]. Transcrip-

tional studies in maize have identified several putative

xylosidases and arabinosidases that are upregulated

during expansion indicating that they might play a role

in cell wall loosening or remodeling, possibly mirroring

xyloglucan remodeling via xyloglucan endotransglycosy-

lase during expansion in dicots [39]. Glycosyl hydrolases

are also implicated in dicot xylan formation: xylanase and

xylosidases are thought to be involved in xylan remodel-

ing in Arabidopsis [40,41], and a b-xylosidase has been

proposed to play a role in stem bending and tension wood

formation in poplar by remodeling xylan [42]. However, it

is unclear exactly how these enzymes modify xylan and

what purpose these modifications serve. This represents

an interesting area for future study, particularly in grasses

where xylan substitutions appear to be more plastic

throughout development.
www.sciencedirect.com 
Regulation of xylan synthesis
Many transcription factors involved in xylan synthesis in

Arabidopsis have been identified, particularly master

switches such as Secondary Cell Wall Associated NAC

Domain 1 (SND1) and several transcription factors

directly downstream, including multiple MYB factors

and a KNOTTED1-like homeodomain protein (reviewed

in [43–45]). Master regulators are active in separate tissues,

such as NAC Secondary Cell Wall Thickening Factor 1

(NST1) which is active in fibers [46] and Vascular-related

NAC Domain (VND) 6 and VND7 which are active in

vessels [47]. The tissue-specific expression of these genes

has made them useful for engineering plant cell walls in

cases where it is desirable to target specific cell types

[48��,49��]. Identification of downstream transcription

factors — including those that directly regulate genes

encoding xylan biosynthetic enzymes — may add to the

repertoire of promoters available for tailoring expression.

Several candidates have been identified by monitoring

expression of genes that are induced by known transcrip-

tion factors [50] and by coexpression analysis [19]. In

addition, similar sets of transcription factors appear to be

involved in secondary cell wall synthesis in poplar [51],

aspen [52], Brachypodium [53], and rice [54], indicating that

engineering strategies using these genes and their promo-

ters may be broadly applicable for modification of crop

plants.

Biotechnology and xylan
Xylan makes up a large fraction of plant biomass, second

only to cellulose. However, the pentose sugars derived

from xylan are not preferred for fermentation into bio-

fuels and other products, since organisms such as yeast

cannot naturally ferment xylose. Therefore, it is desirable

to generate plants with a lower content of xylan. Likewise

acetate is highly inhibitory for yeast and therefore xylan

with a lower acetate content would be advantageous.

Ferulic acid esters make xylan more recalcitrant and

affect not only xylan hydrolysis but also cellulose hydroly-

sis. For these reasons there is a significant interest in

generating plants with less xylan or altered xylan struc-

ture more compatible with downstream processes. In all

these cases, simply downregulating the biosynthetic

enzymes is not a useful approach, since loss-of-function

mutants are severely affected in growth and development

(Figure 3).

Ferulic acid content in grasses can be reduced by expres-

sing ferulic acid esterases. This approach has been used by

several groups, but at least in wheat the plants were

adversely affected [32,55]. An alternative approach has

been demonstrated in rice, where overexpression of a

putative coumaroyl-transferase leads to increased coumaric

acid ester content and decreased ferulic acid ester content,

presumably due to substrate competition [30]. Coumaroyl

esters do not readily participate in crosslinking and the

resulting plants had improved saccharification without
Current Opinion in Biotechnology 2014, 26:100–107
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Figure 3

(a)

(b)

Wild type irx7 pVND7::IRX7
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Arabidopsis mutants with less xylan, such as irx7, show decreased

growth in rosettes and inflorescence stems (a) and have collapsed xylem

vessels (arrow, b). Xylan biosynthesis can be reintroduced into vessels

by complementing irx7 mutant plants with a functional copy of the IRX7

gene driven by the vessel-specific promoter pVND7. Xylan biosynthesis

in vessels restores normal growth and xylem structure. (a)

Bars = 10 mm. (b) Bars = 100 mm.

Modified from [48��].
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showing apparent adverse effects on growth and develop-

ment. Like feruloyl esters, acetyl ester groups can be

removed by expressing acetyl esterases. Expression of

an Aspergillus acetylesterase with some specificity for xylan

in Arabidopsis and Brachypodium led to substantial

reduction in cell wall acetylation and improved sacchar-

ification [56]. The plants did not display impaired growth,

unlike knockout mutants in the xylan acetyltransferase

related protein TBL29/ESKIMO1 [36�,37�].

Recently, a novel approach was established where Arabi-

dopsis mutants deficient in xylan biosynthesis were com-

plemented with the functional version of the mutated

gene under control of a vessel-specific promoter

[48��,49��]. The resulting plants showed growth compar-

able with the wild type plants and had restored vessel

function necessary for efficient water and nutrient trans-

port (Figure 3). However, the plants still had much lower

xylan content because of the low content of xylan in the

interfascicular fibers. Although the fiber cells had less

xylan, some of the plant lines were mechanically as strong

as the wild type plants. This approach of using comple-

mentation with tissue-specific promoters can likely also

be used to improve the performance of mutants in other

xylan-related genes.

Conclusions
Recent progress has identified several proteins involved

in xylan biosynthesis including biosynthetic enzymes,

transporters, and transcription factors. The functions of

several individual enzymes have been definitively ident-

ified, and groups of proteins such as GT61 and BAHD

enzymes are now known to be involved in the introduc-

tion of substitutions although the exact functions of

different members of these groups still need to be deter-

mined. Related proteins may be responsible for different

substitution patterns, as is the case in Arabidopsis, and

future work may help determine what these patterns are

and how they affect xylan structure and interactions with

other cell wall polymers. At the same time, several

enzymes that have been shown to affect xylan synthesis

do not have obvious biosynthetic roles, indicating that

there is still much to be learned. Other gaps include our

limited knowledge of how linkages between xylan and

other polymers are synthesized, the intermediates and

transporters that supply substrates for enzymes in the

Golgi, and how xylan is processed by glycosyl hydrolases

during development. Discoveries in these areas are

within reach and may bolster efforts to engineer xylan

with improved properties for applications such as biofuel

production.
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