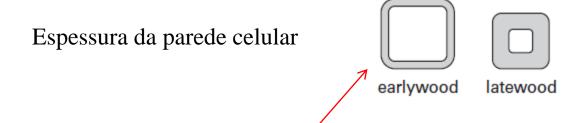
Caracterização de polpas celulósicas

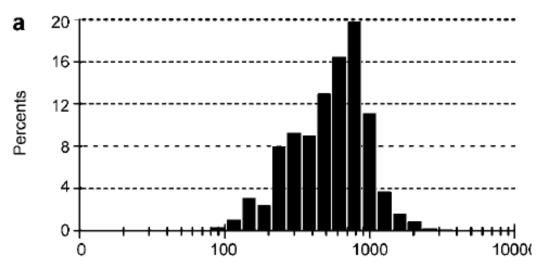
NORMAS USADAS INTERNACIONALMENTE

- SCAN, Scandinavian Pulp, Paper, and Board Testing committee (Finland, Norway and Sweden)
- TAPPI, Technical Association of the Pulp and Paper Industry, USA
- CPPA-TS, Canadian Pulp and Paper Association, Technical Section
- APPITA, Australian Pulp and Paper Industry Technical Association
- ISO, envolve normas de ampla aplicação e também são usadas na indústria de celulose e papel

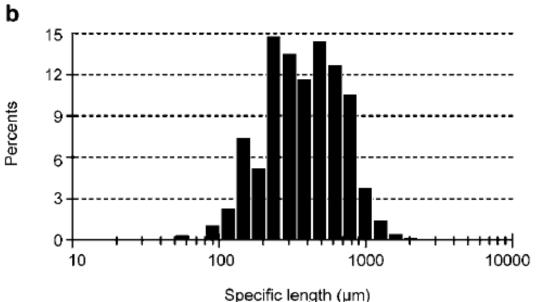

Determinação do comprimento e da espessura de parede das fibras

$$L = \frac{\sum_{i=1}^{n} L_{i}}{n}$$

 $\sum_{i=1}^{L_i} L_i$ medidas: pouco útil, pois pondera igualmente fibras longas e curtos Comprimento médio, baseado no número total de fibras longas e curtas


Length weighted length
$$L_l = \frac{\sum_{i=1}^{n} L_i^2}{\sum_{i=1}^{n} L_i}$$

Comprimento médio, ponderado no Length weighted length $L_l = \frac{\sum_{i=1}^{n} L_i^2}{\sum_{i=1}^{n} L_i}$ comprimento: mais utilizado, pois no valor ponderado obtido, as fibras mais longas apresentam maior importância

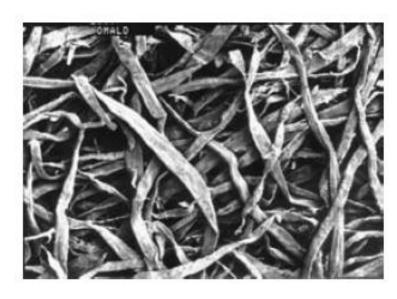

Mais flexíveis e colapsam mais facilmente

Distribuição do tamanho das fibras

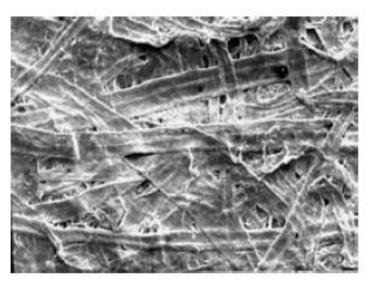
623 μm (ponderado em **N**) 980 μm (ponderado em **L**)

$$L = \frac{\sum_{i=1}^{n} L_{i}}{n}$$

Length weighted length $L_l = \frac{\sum_{i=1}^{n} L_i^2}{\sum_{i=1}^{n} L_i}$

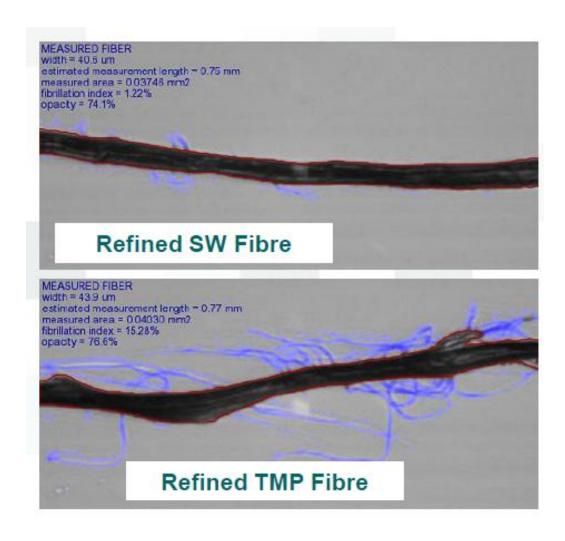

404 μm (ponderado em **N**) 560 μm (ponderado em **L**)

Refino da polpa e evolução das propriedades mecâncias do papel

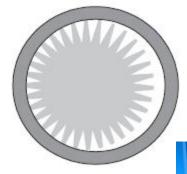

Durante o refino:

- fibras colapsam
- sofrem fibrilação da superfície
- podem gerar fragmentos (finos)

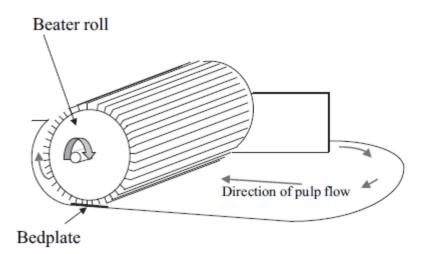
O efeito principal é melhorar a conformação do papel formado, aumentando a resistência aos esforços mecânicos



Antes do refino

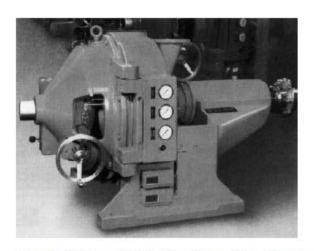

Após o refino

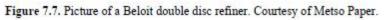
Fibrilação das superfícies externas em função da ação de refino



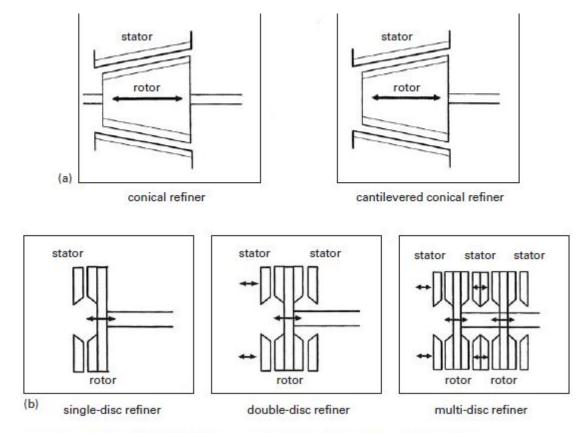
Tipos de refinadores de laboratório

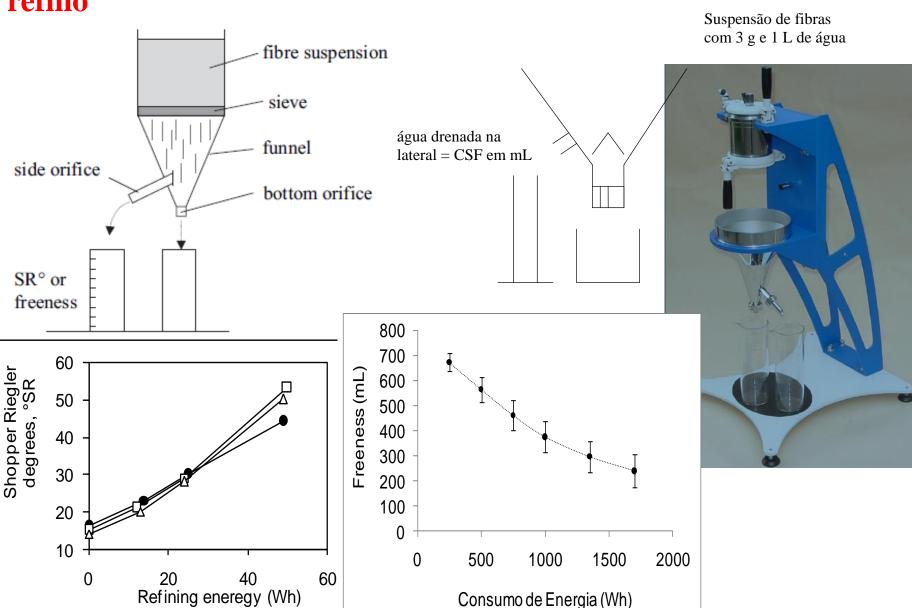
PFI: o mais usado nas normas que envolvem o processamento de polpas químicas

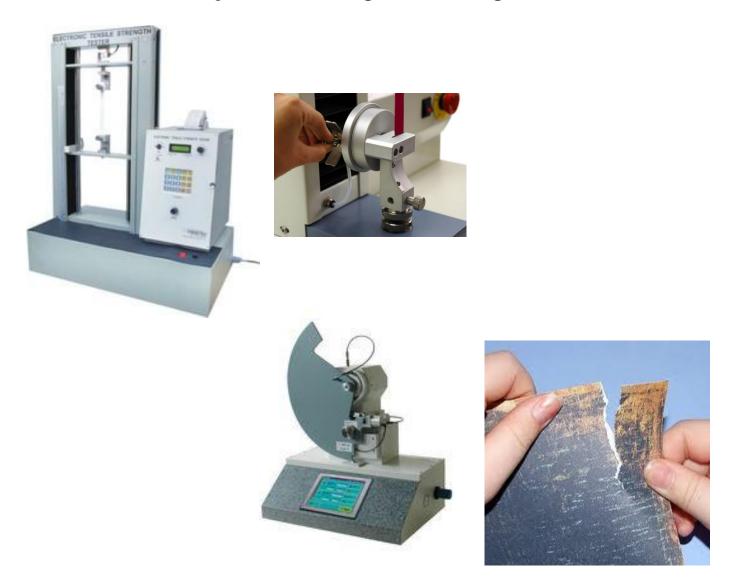



Holandesa

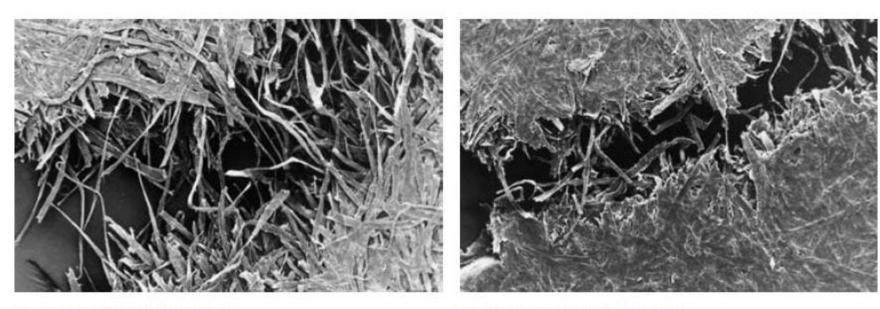
Refinador de discos




Figure 7.5. Schematic description of conical and disc type refiners. Courtesy of Metso Paper.

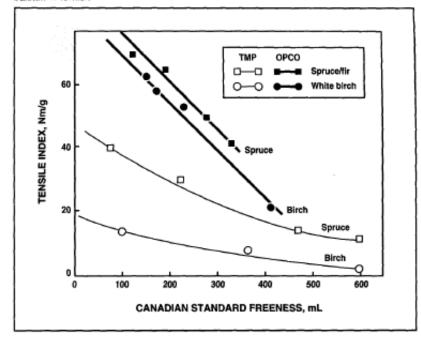

Figure 7.6. Picture of a Metso cantilevered conical refiner. Courtesy of Metso Paper.

Drenabilidade das polpas – ferramenta de controle do grau de

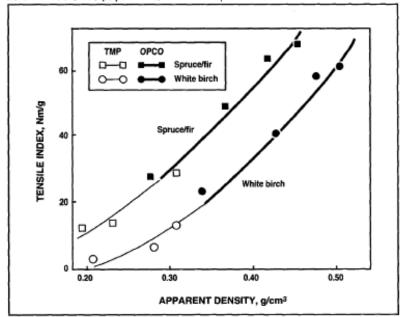

refino

Resistência à tração e ao rasgo versus grau de refino

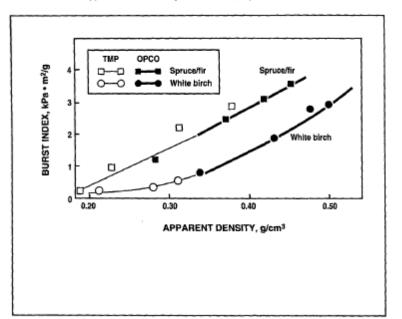
Resistência à tração


a) low degree of bonding

b) high degree of bonding


Figure 2.11. The tensile failure in paper is characterized by elongated and broken fibres.

Resistência mecânica versus CSF


 Tensile index as a function of CSF for TMP and OPCO pulps of white birch and a spruce/ balsam-fir furnish

The effect of apparent sheet density on the tensile indices of laboratory handsheets made from TMP and OPCO pulps of white birch and a spruce/fir furnish

3. Burst index vs. apparent sheet density for the same pulps

Resistência mecânica versus °SR

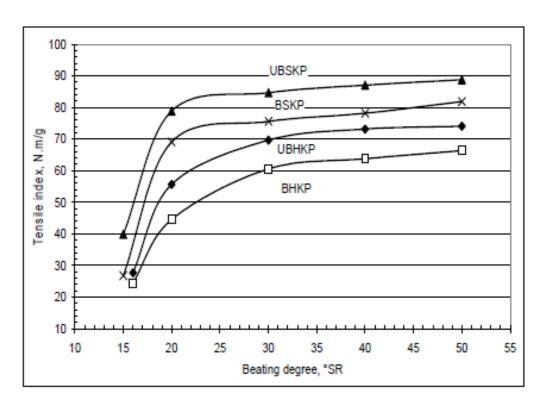
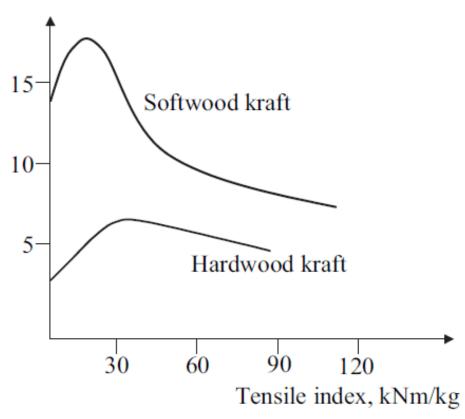
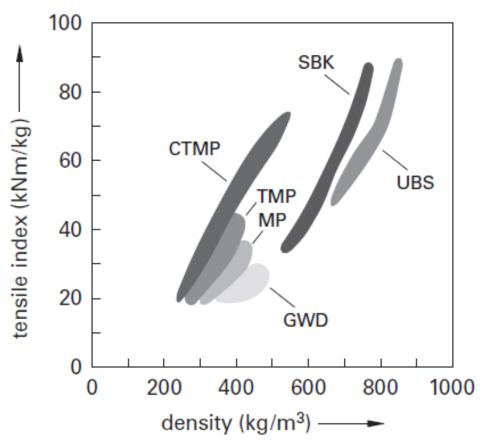



Figure 4: Dependence of tensile index of unbleached and bleached hardwood and softwood kraft pulps on beating degree


Relação tração x rasgo

>> define a aplicação da polpa para a fabricação de muitos tipos de papel

Tear index, Nm²/kg

Comparativo de propriedades de fibras de processos comerciais

TMP = thermomechanical pulp

RMP = refiner pulp

CTMP = chemimechanical pulp

UBS = unbleached kraft pulp

GWD = groundwood pulp

SBK = semi-bleached kraft pulp

Comparativo de propriedades de fibras de processos comerciais

Table 16.4. Summary of the main characteristics of chemical and mechanical pulp.

	Chemical pulp	Mechanical pulp
Pulp yield, %	40–55 %	90–95 %
Lignin content in pulp	0–3 %	20–28 %
Fibre character	Long, strong, collapsed, flexible	Short, weak, uncollapsed, stiff
Sheet density	High	Low
Porosity	Low	High
Fines content in pulp	5–15 %	20–30 %
Pulp strength	High	Low
Light scattering ability	Low	High
Yellowing and ageing	(May be) low	High

Tissue paper: papéis higiênicos, toalhas de papel, lenços de papel e correlatos – gramatura típica 15-25 g/m2 (2 a 4 folhas)

Fibras usadas: TMP, papel reciclado, kraft branqueada

Table 16.5. Properties of Tissue.

Important property	Why it is important
Softness	For the end-use the paper should be velvet-like and easily yield when crumbled
Smoothness	A rough surface, with fibres sticking up giving the surface an uneven appearance would feel rough against the human skin. Smoothness, the inverse of roughness, is therefore important.
Ability to absorb water	The most common use of tissue paper is for wiping up liquid media of some sort, usually water, and the ability to absorb relatively large volumes is probably the most important property. Oil, grease etc are also commonly wiped by tissue.
Wet strength	The tensile strength of wet tissue paper is important since in its end-use tissue will always be wetted. The tissue has to have sufficient wet strength not to fall apart at once when getting moist or soaked.
Dry strength	In the converting process, a certain dry strength is necessary.

Papel de impressão para jornais e revistas

– gramatura típica 40-45 g/m2

Fibras usadas: TMP, papel reciclado, raramente se emprega kraft branqueada como reforço

Table 16.6. Properties of Printing paper.

Important property	Why it is important
Surface strength	Low surface strength will result in fibres torn off the web surface. This may lead to dusting, if the fibres are ripped off the web and end up in the air. Linting can occur if the fibres ripped off will stick to the printing press surface. Linting will reduce the runnability of the printing machine as it would have to be shut down and cleaned.
Fracture strength	Fracture strength is another property important for the runnability of the printing press. It gives the ability of the paper web to resist against fracture from a crack in the web. Low fracture strength can result in web breakage.
Opacity	It is not desirable to read the printing on the opposite side of the paper. Opacity is a measure of "the see-throughness" of a paper. High opacity means the print on the opposite side is well hidden.
Smoothness	A smooth surface is a prerequisite of good printing. A rough surface has fibres sticking up from the surface and may both lead to linting and dusting, as discussed earlier, and to uneven print quality.

Papéis finos ou de reprografia: tipicamente A4 para cópias e impressoras – gramatura 50-100 g/m2

Fibras usadas: kraft branqueada de coníferas ou folhosas e aditivos (fillers)

Table 16.7. Properties of Fine paper.

Important property	Why it is important
Surface strength	Low surface strength will result in fibres torn off the web surface. The fibres ripped off will stick to surfaces within the copying machine, causing machine failure.
Dimensional stability	For example, when toner is applied onto the paper in a copying machine the paper should not curl.
Bending stiffness	The paper has to stay flat when held, not be like a piece of cloth, velvet-like and bendingn.
Smoothness	A smooth surface is a prerequisite of good printing. A rough surface has fibres sticking up from the surface and may lead to uneven print quality.

Papéis de embalagem e cartões: sacos de papel, revestimentos de caixas de papelão

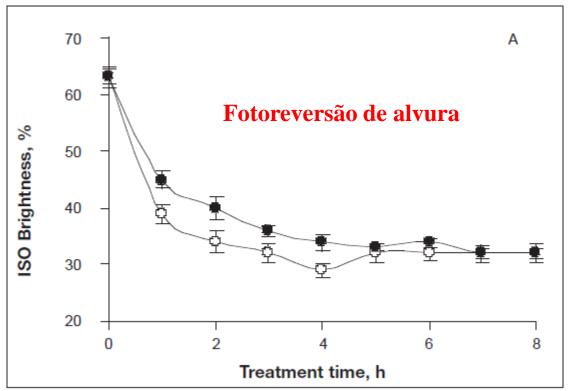
Fibras usadas para embalagem (sackpaper): kraft não branqueada com kappas entre 35-55; gramatura típica 60 – 150 g/m2

Table 16.8. Properties of Sackpaper.

Important property	Why it is important
Toughness	Sackpaper needs to endure applied forces of large magnitude by having a good stretching ability. Curled fibres with microcompressions are more stretchable
Porosity	Good porosity is important so air can escape from within the sack as it is filled.

Fibras usadas para papéis de revestimento de caixas (kraft liner): kraft não branqueada com kappas entre 80-110; — gramatura típica 100-400 g/m2

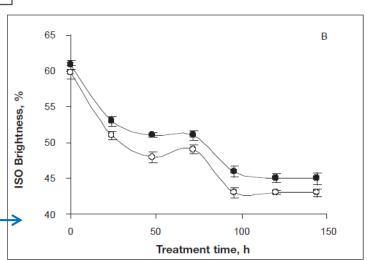
Table 16.9. Properties of Kraftliner.


Important property	Why it is important
Toughness	Tough paper with good resistance against fractures is important for papers used for packages.
Compression strength	Boxes and cartons made of kraft liner are often piled on each other and thereby experience compressional forces.
Bending stiffness	The packages made from linerboard need to be rigid and not crumble when stresses are applied.

Fibras usadas para cartões (paperborad): kraft não branqueada, polpa mecânica, fibras recicladas, raramente kraft branqueada — 3 a 5 camadas e gramatura final de 250 g/m2 ou maior

Table 16.10. Properties of Paperboard.

Important property	Why it is important
Bending stiffness	Packages need to be rigid and not crumble when stresses are applied.
Compression strength	Boxes and cartons are often piled on each other and thereby experience compressional forces.
Smoothness	A smooth surface is a prerequisite of good printing. The top layers of paper- board boxes are often used to print messages of the box contents etc.


Escurecimento de papéis, um grande problema iniciado pela ação da luz

Exposição à uma lâmpada de 250-W (Mercurio – sem o bulbo de vidro). Distância de 10 cm entre papel e fonte

Termoreversão (110 °C) de alvura também é comum, mas mais lenta

